The selective estrogen receptor modulators, tamoxifen and raloxifene, impair dendritic cell differentiation and activation.
نویسندگان
چکیده
Most immune cells, including myeloid progenitors and terminally differentiated dendritic cells (DC), express estrogen receptors (ER) making these cells sensitive to estrogens. Our laboratory recently demonstrated that 17-beta-estradiol (E2) promotes the GM-CSF-mediated development of CD11c+ CD11b(int) DC from murine bone marrow precursors. We tested whether the therapeutic selective estrogen receptor modulators (SERM), raloxifene and tamoxifen, can perturb DC development and activation. SERM, used in treatment of breast cancer and osteoporosis, bind to ER and mediate tissue-specific agonistic or antagonistic effects. Raloxifene and tamoxifen inhibited the differentiation of estrogen-dependent DC from bone marrow precursors ex vivo in competition experiments with physiological levels of E2. DC differentiated in the presence of SERM were assessed for their capacity to internalize fluoresceinated Ags as well as respond to inflammatory stimuli by increasing surface expression of molecules important for APC function. Although SERM-exposed DC exhibited increased ability to internalize Ags, they were hyporesponsive to bacterial LPS: relative to control DC, they less efficiently up-regulated the expression of MHC class II, CD86, and to a lesser extent, CD80 and CD40. This phenotype indicates that these SERM act to maintain DC in an immature state by inhibiting DC responsiveness to inflammatory stimuli. Thus, raloxifene and tamoxifen impair E2-promoted DC differentiation and reduce the immunostimulatory capacity of DC. These observations suggest that SERM may depress immunity when given to healthy individuals for the prevention of osteoporosis and breast cancer and may interfere with immunotherapeutic strategies to improve antitumor immunity in breast cancer patients.
منابع مشابه
Selective Estrogen Receptor Modulators Regulate Dendritic Spine Plasticity in the Hippocampus of Male Rats
Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the number and ge...
متن کاملSelective Estrogen Receptor Modulators Suppress Hif1α Protein Accumulation in Mouse Osteoclasts
Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumula...
متن کاملSelective estrogen receptor modulators regulate reactive microglia after penetrating brain injury
Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In ...
متن کاملClinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport
Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic ves...
متن کاملMolecular determinants for the tissue specificity of SERMs.
Selective estrogen receptor modulators (SERMs) mimic estrogen action in certain tissues while opposing it in others. The therapeutic effectiveness of SERMs such as tamoxifen and raloxifene in breast cancer depends on their antiestrogenic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show that both tamoxifen and raloxifene induce the recruitment of corepressors to target ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 175 4 شماره
صفحات -
تاریخ انتشار 2005